Thanks for the reply.

I would venture a guess that the previous example's answer of 11.5 degrees
is close to the full "included" angle and that if we divide that by 2 we will be close to the actual angle. But thats only a guess on my part. I will look and see what is posted on the other forums. This should be interesting.

Quote Originally Posted by 440stainless
I think theres a slight problem with the algebra there. Trigonometric functions work only for right triangles. The only right triangle you can really make there is by laying the blade on a flat surface. The hypotenuse of the right triangle is the line from the very edge of the blade to the middle of the spine (when looking at it end-on) and tue only leg of the triangle that you can measure is the line from the tip of the blade to the point at which the spine touches the hone.

The two lengths you know form the angle you want to find out (or rather half of the angle). So you use the inverse cosine function: acos(leg/hypotenuse) and multiply that angle by two to get the full angle of the blade. If you want a formula for the width of the spine at a given point on the blade, you can extrapolate a linear function for the width of the blade at a given point and use it to create a function that gives the width of the spine.